Wednesday, March 23, 2011

Fusing Aging Theories: Telomere Shortening Leads to Mitochondrial Dysfunction

Fusing Aging Theories: Telomere Shortening Leads to Mitochondrial Dysfunction

A study finds a link between two theories of aging, which could open doors for research into improved anti-aging therapies.
A study finds a link between theories of aging, which could open doors for research into groundbreaking therapies.

New research is adding insight and linking three theories of aging—one that suggests telomere shortening governs lifespan, and two others that suggest dysfunctional mitochondria or oxidative stress leads to aging.
At Harvard-affiliated Dana-Farber Cancer Institute, scientists have gathered data suggesting telomere shortening is the cause of mitochondrial dysfunction and diminished antioxidant defenses. Together, they decrease the body’s energy and diminish organ function, both characteristic of old age.
As telomeres—protective caps at the end of cell chromosomes—shorten with age and begin to fray, cells activate the p53 gene, which signals an “emergency shutdown” chain of events that turns off normal cell growth and division and compromise antioxidant defenses. Going one step further, data from the carefully orchestrated mouse study, published in Nature, show that the p53 gene also represses PGC1-alpha and PGC1-beta. These PCGs are considered the master regulators of metabolism and mitochondrial function.
Repressing PCGs increases the number of dysfunctional mitochondria (with mutated mitochondrial DNA) and leads to a decrease in functional mitochondria distributed throughout in muscles and organs. The dysfunctional mitochondria in aged tissues leak greater amounts of reactive oxygen species and the lack of functional mitochondria hinders normal energy production from cell respiration (the body’s main producer of ATP energy).

No comments:

Post a Comment